Resolution Trend of Just-in-Time Requirements in
Open Source Software Development

Tanmay Bhowmik* and Sandeep Reddivari'
* Dept. of Math., Computer Science and Information Systems, Northwest Missouri State University, Maryville, MO, USA
T School of Computing, University of North Florida, Jacksonville, FL, USA
bhowmik @nwmissouri.edu, sandeep.reddivari @unf.edu

Abstract—Research in “just-in-time” requirements engineering
has recently emerged. Some research has explored the nature
of just-in-time requirements analysis in open source software
(OSS) systems. Whereas, others have focused on techniques, such
as traceability-enabled refactoring and horizontal traceability, in
order to help manage just-in-time requirements. Little is known,
however, about the resolution trends of just-in-time requirements
in OSS development. In this position paper, we analyze the
resolution time of the requirements of Firefox and Mylyn,
and identify interesting patterns throughout their development
history. Our analysis instigates five intriguing questions regarding
the characteristics of just-in-time requirements engineering for
OSS systems, and opens further research avenues in this area.

Index Terms—Just-in-time RE; open source RE, stakeholders’
socio-technical interaction; social band of human action

I. INTRODUCTION

Requirements engineering (RE) is a set of activities con-
cerned with identifying and communicating the purpose of a
software system, and the contexts in which it will be used [1].
Traditionally, RE has been considered as a centralized, col-
located, and phase-specific process associated with individual
projects or project components. Much of the traditional RE
has focused on models and techniques in order to aid identi-
fication and documentation of stakeholders and their needs in
a form that can be analyzed, communicated, agreed upon, and
eventually realized and validated. However, in the agile and
open source software (OSS) development environments, RE
activities need to focus on generation, negotiation, adaptation,
realization, and maintenance of requirements in an iterative,
and dynamic software-intensive ecosystem [2]. RE activities in
the OSS development paradigm are therefore no longer part of
a centralized process specific to a particular phase of software
development. Rather, these activities are performed during the
overall software development process in a more ad-hoc and as
needed manner.

Recent research has highlighted the ad-hoc and dynamic na-
ture of RE activities in the OSS development paradigm [2], [3],
[4]1, [5], [6], [7], [8]. In order to reflect the as needed nature of
the requirements in OSS development, Ernst and Murphy [4]
introduced the notion of “just-in-time” requirements indicating
that the identification and realization of these requirements
are rather tightly coupled. Just-in-time requirements are often
captured as lightweight informalisms [3], such as user stories,
and the developers constantly and iteratively elaborate and
clarify the requirements during realization. Some research

has explored the nature of just-in-time requirements analysis
in OSS systems [3], [4], whereas others have focused on
techniques, such as traceability-enabled refactoring [6] and
horizontal traceability [6], in order to help manage just-in-time
requirements. Little is known, however, about the resolution
trends of just-in-time requirements that help addressing exact
user-needs in a timely manner.

In this position paper, we report on an exploratory study [9]
that investigates the just-in-time requirements of Firefox ! and
Mylyn [10], two large scale OSS systems successful in their
application domains. In particular, we analyze the resolution
time of the requirements of our subject systems starting from
their inception, and identify interesting patterns throughout
their development history. Our analysis instigates intriguing
questions regarding the characteristics of just-in-time RE for
OSS systems and opens further research avenues in this area.
The rest of the paper is organized as follows. Section II covers
background information. Section III details the study setup.
Section IV presents data analysis and discussion, followed by
Section V giving a summary of some related work. Finally,
Section VI concludes the paper.

II. BACKGROUND

The concept of “just-in-time” as a production strategy [11]
can be traced back to the 1950s [11].2 In order to meeting
customer demand at the right time and in the exact amount,
Toyota and other Japanese firms introduced just-in-time pro-
duction strategy that followed three principles of economic
growth: build only what is needed, eliminate anything which
does not add value, and stop if something goes wrong [11].

In the domain of software development, Scacchi [3] pio-
neered the research in understanding the OSS requirements.
Alspaugh and Scacchi [8] studied the RE activities of OSS
systems and emphasized that many successful OSS projects
do not follow the classical, one-time RE process. Scacchi [3]
identified a set of twenty-odd different types of what he called
‘software informalisms’ in use across a wide variety of OSS
projects. In a further study, Scacchi et al. [12] examined OSS
systems from five different application domains and found that
very often a new OSS requirement is a feature informally
captured through a story telling or a user experience at the
initial stage.

Uhttp://www.mozilla.org/en-US/firefox/new/
2Call for paper, Just In Time RE Workshop, Ottawa, Canada, 2015

TABLE I
DATA COLLECTION OF SUBJECT SYSTEMS

System || Application domain | Analyzed history | # of requirements studied | # of code files Written in
Firefox Web browser 2003-2011 1,985 1,968 (C/C++) | C/C++, JavaScript
Mylyn Eclipse plug-in 2005-2012 451 2,321 Java

The study presented in this position paper is built upon this
pioneering work. In particular, we investigate the OSS require-
ments recorded in issue tracking systems from a resolution
perspective, and draw discussion points in terms of research
questions regarding just-in-time RE in OSS development.

III. STUDY SETUP

In our study, we analyze the successfully implemented
requirements of two OSS systems: Firefox and Mylyn. We
select these projects as the subject systems for our exploratory
study [9] due to a number of reasons. First, they are large
OSS systems and were previously studied in software en-
gineering research [4], [10], [13]. Second, they are from
different application domains, they are successful in their own
domains, and therefore they can be considered representatives
of their own application domains. Third, the relevant data
required to conduct this study is freely available online in the
Bugzilla issue tracking system. This enables other researchers
to replicate our study. Next is a brief description of our chosen
systems.

Firefox is a successful open source project and a dominating
web browser since its first release in 2004. From November
2004 to June 2011, Mozilla released Firefox stable versions
1.0 through 5.0, and after that made some rapid releases.’
We collect data about the requirements from the beginning of
Firefox history until the release of version 5.0.

Mylyn is an Eclipse plug-in that monitors programmer
activity in the Eclipse IDE [10]. It was first started as a part
of a Ph.D. thesis supervised by Gail Murphy at the Software
Practices Lab at UBC.* We consider the requirements of
Mylyn from its starting in 2005 till February 2012.

For every successfully implemented requirement (i.e.,
closed requirement), we collect information as follows: the
issue ID, the issue owner (i.e., the stakeholder to whom the
issue is assigned), reporting time stamp, closing time stamp,
and the number of comments and artifacts posted. All the
information is directly available on the issue page. We run
a web scraping tool written in Java to automatically collect
the required information. Table I presents an overview of the
collected data that we analyze for the two systems. Note that
the number indicating the size of Firefox does not include
JavaScript files. In what follows, we detail the analysis of the
collected data and further discuss our observation.

IV. DATA ANALYSIS AND DISCUSSION

In this position paper, we hinge our discussion about the
trends in just-in-time requirements resolution in OSS soft-
ware development environment. To that end, we analyze the

3http://www.mozilla.org/en-US/firefox/releases/
“http://www.eclipse.org/mylyn/about/

resolution time of the requirements of Firefox and Mylyn
over their history and present further discussion based on our
observation.

A. Data Analysis

For both Firefox and Mylyn, we calculate the resolution
time for each successfully implemented requirement falling
within our analysis history (see Table I). In calculating the
resolution time, we take the difference between the issue
closing time stamp and issue reporting time stamp, and
measure the difference in hours. Note that in Bugzilla, every
time stamp consists of a date and time in hours and minutes.
Next, we order the requirements for each subject system in a
chronological manner by sorting them based on their reporting
time stamps.

Figure 1 and Figure 2 present the resolution time of the
chronologically ordered requirements for Firefox and My-
lyn respectively. The x-axis represents the unique issue ID
designated by Bugzilla, whereas y-axis shows the resolution
time in hours. Note that x-axis also indicates the time span
of the analyzed history, i.e., 2003 to 2011 for Firefox and
2005 to 2012 for Mylyn, in an indirect manner. The specific
points of major releases along the time span are indicated
by arrows. The main objective of the x-axis, however, is to
accommodate all the closed requirements. Thus, the space in
the figures between two consecutive releases may not represent
the time difference in a consistent scale. Rather it shows
all the successfully completed requirements proposed in the
corresponding time window.

B. Discussion

In Figure 1, we observe a very interesting and apparently
consistent pattern in the resolution time of Firefox require-
ments. We notice that, in every release cycle, the majority
of the requirements proposed earlier have relatively longer
resolution time. However, the resolution time keeps decreasing
as we move towards the release, and it is considerably low
for the requirements proposed within a time period of 2 to 3
months preceding a release (cf. the encircled areas in Figure 1).
The resolution time for Mylyn requirements, however, tells us
a different story than that of Firefox. In Figure 2, we notice that
Mylyn requirements are a combination of relatively short and
long resolution times distributed over the development history.
In other words, we do not observe any apparent pattern in the
chronologically ordered requirements resolution time.

At this point, it is worth mentioning that Firefox and
Mylyn vary in their governance structure [14] and task triage
process [15]. Firefox is a foundation project and follows a
volunteer-based triage process. Mylyn, though started in a
monarchy way as part of Mik Kersten’s Ph.D. thesis, gradually

Resolution Time in Hours
(Firefix Requirements)

14000 -
i i Version 3
12000 - Version 1 Version 2
Release Release Release
10000 - Version 4
Release
8000 -
Version 5
6000 -
Release
4000 -
2000 - .
(\) (\‘) (_\ (.)(') L Social Band
0 T <
NN AN O TdANDONOVOONDOVAOANOOOTANMNMIOITNOOSTONINNOO W WO LW
OMN OO A T AT MMNOODDOMOAONTIOIANOAdNMOVONNNANSIOIWNINENINNDCHMOLWAN
O MT O A AN NINONO O TN ANOOMOO AN dNONMNMOMANNOO O
oMo Mmuowuog oNOVOANNOEIILOOOMOOOTLANDDOL OO NSNS ST HOnLDm
N AN NN T TN OOONANANANOOMOSNDNDONOOIDDDOSEWMW OMNLL O MW
N AN AN AN AN AN AN AN NN ANANANOONDOONDOONNONONNON TSI T NN oo
Fig. 1. Resolution time for Firefox requirements between 2003 and 2011.
Resolution Time in Hours
(Mylyn Requirements)
. Version 3.3
10000 -) Version 2.3 Rel
9000 - Version 2 Release Version3 e version 3.5
8000 - Release Release Release
7000 -+
6000 -
5000 -+
4000 -
3000 -+
2000 -+
o0 | g L | I e
0 _\ m‘\ “‘H ‘\H ‘\H\“ \‘\‘\\‘ M ‘ ‘ ‘M WL \““MM o H \\Hw‘w\ il \‘\‘\ \‘\ H ! \‘ \‘ “\H\ “\ Hh” “\ I
N A NI NN ooN OO I AN O MOAONONOMWUN 00O WX W - W
NN ANLWNOWOWOWOMM—AO OO NMOOINDMWL OO O MW O AN I O 0
00 WO WOV ANNANANSO T AT AANSNMOOOONIONNNL AHO AT AN
NN OO MWMOAOMO MO0 OO T NNOMOLL MO WO WwWwmMmOo O
< O O NN OOO A A N MM IETIFT N O OMNNOWOWOWODO DO dd NN MM W
™ e H A" A AN AN AN AN AN AN AN AN AN AN AN NN AN NN NN AN OO OO ;NN NN oMM
Fig. 2. Resolution time for Mylyn requirements between 2005 and 2012.

evolved into a community centering around the open source
implementation of the task-focused interface. For Mylyn,
determining the relevance and priority of each submitted issue
is developer-based. Considering the variety in our subject
systems along these different dimensions, the observations
made so far inspire us to formulate the following questions
regarding just-in-time RE.

e QI: Is just-in-time requirements resolution in a tradition-
ally volunteer-based OSS project highly release driven?
Q2: In a traditionally volunteer-based OSS development
environment, does just-in-time RE manifest itself more
strongly when a release is approaching?

03: Does the just-in-time requirements management of
an OSS project that evolves around a central figure (e.g.,
Mik Kersten in Mylyn) follow a different approach than
a traditionally volunteer-based OSS project?

In case of both Firefox and Mylyn, we notice another
interesting phenomenon from the perspective of the time
scale of human action [16]. The theories of cognition suggest
that different human actions occur at different time bands.
Depending on the time required to solve a problem by
humans, Newell classified human actions into six different
time bands: biological, cognitive, rational, social, historical,
and evolutionary, where biological takes a few milliseconds
and evolutionary taking millions of years [16]. For both the
subject systems, we notice that many requirements fall within
the social band of human action considering the resolution
time (ranging from about 1.2 days or 28.8 hours to about
3.5 months or 2,520 hours [16]). In fact, about 90% of Mylyn
Requirements fall into this category. In case of Firefox, almost
all the requirements proposed within a 2 to 3 months time

period before a release (cf. the encircled areas in Figure 1)
fall into the social band.

In a recently published study, we have demonstrated that
higher socio-technical interaction [17] among stakeholders
leads to improved developer productivity [18]. A further
analysis on the collected data suggests that the average number
of socio-technical interaction among stakeholders (in terms
of posting comments and artifacts over the issue tracking
systems [19]) for the requirements in the social band (19.5
and 13.2 for Firefox and Mylyn respectively) is higher than
that of the overall average (18 for Firefox and 11 for Mylyn).
Based on these observations, we formulate further questions
regarding just-in-time RE.

e (04: Does just-in-time RE predominantly fall within the

social band of human action?

e 05: Does just-in-time RE potentially lead to higher

developer productivity?

Before we wrap up our discussion, an important aspect
worth mentioning is that OSS development is largely a
volunteer activity. In this software development paradigm,
the stakeholders are motivated by their passion for sharing
technological knowledge with others. Therefore, some theories
from sociology and anthropology might be relevant to provide
a strong foundation for investigating our research questions.

V. RELATED WORK

In their seminal work, Ernst and Murphy [4] advanced our
understanding about OSS RE by studying the requirements
management of three successful OSS projects. Ernst and
Murphy coined the notion of “just-in-time” requirements in
OSS development indicating the fact that OSS requirements
are captured in a rather informal manner and further elaborated
during realization [4]. Another important finding from Ernst
and Murphy’s study is the dominant use of issue tracking sys-
tems like Bugzilla and Jira in managing OSS requirements [4].

In order to explore the possibility of a better tool support,
Niu et al. [6] studied the requirements of both open source
and proprietary software systems and introduced traceability-
enabled refactoring for managing just-in-time requirements.
Heck and Zaidman [7] studied open source feature requests in
Subversion’, and suggested a horizontal traceability technique
using a Vector Space Model (VSM) in order to help realizing
just-in-time requirements.

As research on just-in-time requirements has recently
emerged [4], [6], [7], our knowledge on just-in-time RE
for OSS systems is yet limited. In order to further expand
the literature, in this position paper, we have studied the
OSS requirements recorded in issue tracking systems from a
resolution perspective, and drawn interesting discussion points
regarding just-in-time RE in the OSS development paradigm.

VI. LIMITATION AND CONCLUSION

In this position paper, we have analyzed the resolution time
of the closed requirements for two large scale OSS systems

Shttps://subversion.apache.org/

and formulated five questions for further investigation. As the
questions are derived based on our analysis on just two subject
systems, further analysis involving more projects might be
required to better identify more specific research questions.

Nevertheless, the questions presented in this paper instigate
critical thinking, thereby serving as starting points for detailed
research. Such research will help us gain valuable knowledge
on just-in-time RE for OSS systems. In addition, it will provide
important insights on the agile development paradigm for
commercial projects.

REFERENCES

[1] B. Nuseibeh and S. Easterbrook, “Requirements engineering: a
roadmap,” in Proceedings of the Conference on The Future of Software
Engineering, ser. ICSE 00, 2000, pp. 35-46.

[2] M. Jarke, P. Loucopoulos, K. Lyytinen, J. Mylopoulos, and W. Robinson,
“The brave new world of design requirements,” Information Systems,
vol. 36, no. 7, pp. 992-1008, 2011.

[3] W. Scacchi, “Understanding the requirements for developing open source
software systems,” IEE Software, vol. 149, no. 1, pp. 24-39, 2002.

[4] N. A. Ernst and G. Murphy, “Case studies in just-in-time requirements
analysis,” in Proceedings of the International Workshop on Empirical
Requirements Engineering at RE, 2012, pp. 25-32.

[5] M. Poppendieck and T. Poppendieck, Lean software development: an
agile toolkit. Addison-Wesley Professional, 2003.

[6] N. Niu, T. Bhowmik, H. Liu, and Z. Niu, “Traceability-enabled refactor-
ing for managing just-in-time requirements,” in Requirements Engineer-
ing Conference (RE), 2014 IEEE 22nd International, 2014, pp. 133-142.

[7]1 P. Heck and A. Zaidman, “Horizontal traceability for just-in-time
requirements: the case for open source feature requests,” Journal of
Software: Evolution and Process, vol. 26, no. 12, pp. 1280-1296, 2014.

[8] T. A. Alspaugh and W. Scacchi, “Ongoing software development without
classical requirements,” in Proceedings of the International Conference
on Requirements Engineering (RE), 2013, pp. 165-174.

[9] R. K. Yin, Case study research: Design and methods.

tions, 2008, vol. 5.

M. Kersten and G. Murphy, “Mylar: A degree-of-interest model for

ides,” in Proceedings of the International Conference on Aspect-

Oriented Software Development (AOSD), 2005, pp. 159-168.

[11] T. Ono, Toyota production system: beyond large-scale production. Pro-
ductivity press, 1988.

[12] W. Scacchi, C. Jensen, J. Noll, and M. Elliott, “Multi-modal modeling

of open source software requirements processes,” in Proceedings of the

International Conference on Open Source Software, 2005, pp. 1-8.

S. Zaman, B. Adams, and A. E. Hassan, “Security versus performance

bugs: A case study on firefox,” in Proceedings of the Working Confer-

ence on Mining Software Repositories (MSR), 2011, pp. 93-102.

C. Bird, D. Pattison, R. D’Souza, V. Filkov, and P. Devanbu, “Latent

social structure in open source projects,” in Proceedings of the ACM

SIGSOFT International Symposium on Foundations of Software Engi-

neering (SIGSOFT/FSE), 2008, pp. 24-35.

[15] J. Anvik and G. C. Murphy, “Reducing the effort of bug report triage:

recommenders for development-oriented decisions,” ACM Transactions

on Software Engineering and Methodology, vol. 20, no. 3, Article No.

10, August 2011.

A. Newell, Unified Theories of Cognition.

University Press, 1990.

A. Meneely, B. Smith, and L. Williams, “iTrust electronic health care

system: a case study,” in Software and Systems Traceability, J. Cleland-

Huang, O. Gotel, and A. Zisman, Eds. Springer, 2012.

T. Bhowmik, N. Niu, W. Wang, J.-R. Cheng, L. Li, and X. Cao, “Optimal

group size for software change tasks: A social information foraging

perspective,” Cybernetics, IEEE Transactions on, vol. PP, no. 99, pp.

1-12, 2015.

[19] T. Wolf, A. Schroter, D. Damian, and T. Nguyen, “Predicting build
failures using social network analysis on developer communication,” in
Proceedings of the International Conference on Software Engineering
(ICSE), 2009, pp. 1-11.

SAGE Publica-

(10]

[13]

(14]

[16] Massachusetts: Harvard

[17]

[18]

